Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 128
1.
New Phytol ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38730437

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.

2.
Dev Cell ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38640925

Although the antagonistic effects of host resistance against biotrophic and necrotrophic pathogens have been documented in various plants, the underlying mechanisms are unknown. Here, we investigated the antagonistic resistance mediated by the transcription factor ETHYLENE-INSENSITIVE3-LIKE 3 (OsEIL3) in rice. The Oseil3 mutant confers enhanced resistance to the necrotroph Rhizoctonia solani but greater susceptibility to the hemibiotroph Magnaporthe oryzae and biotroph Xanthomonas oryzae pv. oryzae. OsEIL3 directly activates OsERF040 transcription while repressing OsWRKY28 transcription. The infection of R. solani and M. oryzae or Xoo influences the extent of binding of OsEIL3 to OsWRKY28 and OsERF040 promoters, resulting in the repression or activation of both salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways and enhanced susceptibility or resistance, respectively. These results demonstrate that the distinct effects of plant immunity to different pathogen types are determined by two transcription factor modules that control transcriptional reprogramming and the SA and JA pathways.

3.
Mol Med Rep ; 29(6)2024 06.
Article En | MEDLINE | ID: mdl-38639187

Knee osteoarthritis (KOA) is a chronic degenerative disease that affects the quality of life of middle­aged and elderly individuals, and is one of the major factors leading to disability. Rongjin Niantong Fang (RJNTF) can alleviate the clinical symptoms of patients with KOA, but the molecular mechanism underlying its beneficial effects on KOA remains unknown. Using pharmacological analysis and in vitro experiments, the active components of RJNTF were analyzed to explore their potential therapeutic targets and mechanisms in KOA. The potential targets and core signaling pathways by which RJNTF exerts its effects on KOA were obtained from databases such as Gene Expression Omnibus, Traditional Chinese Medicine Systems Pharmacology and Analysis Platform. Subsequently, chondrocyte apoptosis was modeled using hydrogen peroxide (H2O2). Cell Counting Kit­8 assay involving a poly [ADP­ribose] polymerase­1 (PARP1) inhibitor, DAPI staining, reverse transcription­quantitative PCR, Annexin V­FITC/PI staining and flow cytometry, western blotting and co­immunoprecipitation analysis were used to determine the therapeutic efficacy of RJNTF on KOA and to uncover the molecular mechanism. It was found that PARP1­knockdown lentivirus, incubation with PARP1 inhibitor PJ34, medium and high doses of RJNTF significantly reduced H2O2­induced chondrocyte apoptosis. Medium and high doses of RJNTF downregulated the expression of cleaved caspase­3, cleaved PARP1 and PAR total proteins, as well as nucleus proteins of apoptosis­inducing factor (AIF) and migration inhibitory factor (MIF), and upregulated the expression of caspase­3, PARP1 total protein, as well as the cytoplasmic expression of AIF and MIF, suggesting that RJNTF may inhibit chondrocyte apoptosis through the PARP1/AIF signaling pathway.


Chondrocytes , Osteoarthritis, Knee , Aged , Middle Aged , Humans , Chondrocytes/metabolism , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/metabolism , Caspase 3/metabolism , Network Pharmacology , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Quality of Life , Apoptosis
4.
Plants (Basel) ; 13(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38674486

Flower color is an important trait that affects the economic value of Prunus mume, a famous ornamental plant in the Rosaceae family. P. mume with purple-red flowers is uniquely charming and highly favored in landscape applications. However, little is known about its flower coloring mechanism, which stands as a critical obstacle on the path to innovative breeding for P. mume flower color. In this study, transcriptomic and targeted metabolomic analyses of purple-red P. mume and white P. mume were performed to elucidate the mechanism of flower color formation. In addition, the expression patterns of key genes were analyzed using an RT-qPCR experiment. The results showed that the differential metabolites were significantly enriched in the flavonoid synthesis pathway. A total of 14 anthocyanins emerged as the pivotal metabolites responsible for the differences in flower color between the two P. mume cultivars, comprising seven cyanidin derivatives, five pelargonium derivatives, and two paeoniflorin derivatives. Moreover, the results clarified that the metabolic pathway determining flower color in purple-red P. mume encompasses two distinct branches: cyanidin and pelargonidin, excluding the delphinidin branch. Additionally, through the integrated analysis of transcriptomic and metabolomic data, we identified 18 key genes responsible for anthocyanin regulation, thereby constructing the gene regulatory network for P. mume anthocyanin synthesis. Among them, ten genes (PmCHI, PmGT2, PmGT5, PmGST3, PmMYB17, PmMYB22, PmMYB23, PmbHLH4, PmbHLH10, and PmbHLH20) related to anthocyanin synthesis were significantly positively correlated with anthocyanin contents, indicating that they may be the key contributors to anthocyanin accumulation. Our investigation contributes a novel perspective to understanding the mechanisms responsible for flower color formation in P. mume. The findings of this study introduce novel strategies for molecular design breeding aimed at manipulating flower color in P. mume.

6.
Nano Lett ; 24(8): 2619-2628, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38350110

Post-extraction alveolar bone atrophy greatly hinders the subsequent orthodontic tooth movement (OTM) or implant placement. In this study, we synthesized biodegradable bifunctional bioactive calcium phosphorus nanoflowers (NFs) loaded with abaloparatide (ABL), namely ABL@NFs, to achieve spatiotemporal management for alveolar bone regeneration. The NFs exhibited a porous hierarchical structure, high drug encapsulation efficacy, and desirable biocompatibility. ABL was initially released to recruit stem cells, followed by sustained release of Ca2+ and PO43- for in situ interface mineralization, establishing an osteogenic "biomineralized environment". ABL@NFs successfully restored morphologically and functionally active alveolar bone without affecting OTM. In conclusion, the ABL@NFs demonstrated promising outcomes for bone regeneration under orthodontic condition, which might provide a desirable reference of man-made "bone powder" in the hard tissue regeneration field.


Bone Regeneration , Osteogenesis , Parathyroid Hormone-Related Protein , Humans , Bone and Bones , Porosity
7.
J Environ Manage ; 354: 120456, 2024 Mar.
Article En | MEDLINE | ID: mdl-38412731

The inhibiting effects of ciprofloxacin (CIP) on enhanced biological phosphorus removal (EBPR) were investigated with no change in reactor operation and with increased aeration rate and sludge retention time (SRT) to explore inhibition-alleviating solutions. Additionally, performance recoverability was evaluated. The results showed that the phosphorus removal efficiency in the presence of 0.002-0.092 mg/L CIP for 7 days was only 12.5%. Increasing the aeration rate relieved inhibition (33.5% phosphorus removal efficiency on Day 7), and increasing SRT slowed EBPR performance deterioration. The EBPR performance recovered from CIP inhibition and increases in the aeration rate and SRT resulted in different recovery phenomena. The maximum PO43--P release rate continued to decrease in the first 2 days of the recovery stage and then gradually increased. However, the maximum PO43--P uptake rate immediately increased at different rates among reactors, which might be attributed to variations in the microbial community structure, decreased poly-P content, and enhanced abundances of ABC transporters and quorum sensing. It was found that some microorganisms associated with phosphorus removal were more tolerant to CIP than glycogen accumulating organisms. Moreover, the increased relative abundance of the qepA gene indicated that the microorganisms in the EBPR system had strong antibiotic resistance capacity. The bacterial community structure was significantly affected by CIP and could not recover to the initial structure. The results help to provide technical support for the operation of the EBPR process in the presence of CIP and to increase the understanding of system recoverability.


Ciprofloxacin , Phosphorus Radioisotopes , Wastewater , Ciprofloxacin/pharmacology , Phosphorus , Bioreactors/microbiology , Sewage
8.
Heliyon ; 10(2): e23203, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38312641

Several clinical and preclinical studies have shown that nonsteroidal anti-inflammatory drugs (NSAIDs), particularly aspirin, reduce the incidence of various cancer types. However, there is still a lack of literature evaluating the overall association between multiple cancer morbidities and NSAIDs. Thus, we conducted an umbrella review to evaluate the quality of evidence, validity, and biases of the existing systematic reviews and meta-analyses on the relationships between NSAIDS and multiple tumor incidence outcomes. We found that NSAIDs might be associated with a decreased risk of several cancers, including the central nervous system, breast, esophageal, gastric, head and neck, hepatocellular, cholangiocarcinoma, colorectal, endometrial, lung, ovary, prostate, and pancreatic cancers, but regular intake of any dose of non-aspirin NSAIDs (NA-NSAIDs) could increase the incidence of kidney cancer. However, most of included studies are evaluated as low quality according to our evidence assessment. Furthermore, due to the potential side effects, such as hemorrhage, digestive symptoms and peptic ulcer, it is still not recommend to use NSAIDs regularly to prevent cancers.

9.
J Am Chem Soc ; 146(7): 4814-4821, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38323566

The comprehension of activity and selectivity origins of the electrooxidation of organics is a crucial knot for the development of a highly efficient energy conversion system that can produce value-added chemicals on both the anode and cathode. Here, we find that the potential-retaining trivalent nickel in NiOOH (Fermi level, -7.4 eV) is capable of selectively oxidizing various primary alcohols to carboxylic acids through a nucleophilic attack and nonredox electron transfer process. This nonredox trivalent nickel is highly efficient in oxidizing primary alcohols (methanol, ethanol, propanol, butanol, and benzyl alcohol) that are equipped with the appropriate highest occupied molecular orbital (HOMO) levels (-7.1 to -6.5 eV vs vacuum level) and the negative dual local softness values (Δsk, -0.50 to -0.19) of nucleophilic atoms in nucleophilic hydroxyl functional groups. However, the carboxylic acid products exhibit a deeper HOMO level (<-7.4 eV) or a positive Δsk, suggesting that they are highly stable and weakly nucleophilic on NiOOH. The combination (HOMO, Δsk) is useful in explaining the activity and selectivity origins of electrochemically oxidizing alcohols to carboxylic acid. Our findings are valuable in creating efficient energy conversions to generate value-added chemicals on dual electrodes.

10.
Ecotoxicol Environ Saf ; 269: 115754, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38043416

The social division of labor within the honeybee colony is closely related to the age of the bees, and the age structure is essential to the development and survival of the colony. Differences in tolerance to pesticides and other external stresses among worker bees of different ages may be related to their social division of labor and corresponding physiological states. Pyraclostrobin was widely used to control the fungal diseases of nectar and pollen plants, though it was not friend to honey bees and other pollinators. This work aimed to determine the effects of field recommended concentrations of pyraclostrobin on the activities of protective and detoxifying enzymes, on the expression of genes involved in nutrient metabolism, and immune response in worker bees of different ages determined to investigate the physiological and biochemical differences in sensitivity to pyraclostrobin among different age of worker bees. The result demonstrates that the tolerance of adult worker bees to pyraclostrobin was negatively correlated with their age, and the significantly reduced survival rate of forager bees (21 day-old) with continued fungicide exposure. The activities of protective enzymes (CAT and SOD) and detoxifying enzymes (CarE, GSTs and CYP450) in different ages of adult worker bees were significantly altered, indicating the physiological response and the regulatory capacity of worker bees of different ages to fungicide stress was variation. Compared with 1 and 8 day-old worker bees, the expression of nutrient-related genes (ilp1 and ilp2) and immunity-related genes (apidaecin and defensin1) in forager bees (21 day-old) was gradually downregulated with increasing pyraclostrobin concentrations. Moreover, the expression of vitellogenin and hymenoptaecin in forager bees (21 day-old) was also decreased in high concentration treatment groups (250 and 313 mg/L). The present study confirmed the findings of the chronic toxicity of pyraclostrobin on the physiology and biochemistry of worker bees of different ages, especially to forager bees (21 day-old). These results would provide important physiological and biochemical insight for better understanding the potential risks of pyraclostrobin on honeybees and other non-target pollinators.


Fungicides, Industrial , Pesticides , Bees/genetics , Animals , Fungicides, Industrial/toxicity , Strobilurins , Plant Nectar
11.
Nat Commun ; 14(1): 7987, 2023 Dec 02.
Article En | MEDLINE | ID: mdl-38042856

A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from -7.4 to -6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from -0.65 to -0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g6eg1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.

12.
Chem Commun (Camb) ; 60(1): 122-125, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38038120

Mesoporous Pt-based alloy nanospheres were prepared via a one-step soft-template strategy. The regulation of electronic structure, lattice contraction and abundant active sites endowed the mesoporous Pt-based catalysts with remarkable electrochemical activity towards ethanol oxidation reaction.

13.
iScience ; 26(12): 108436, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38077149

Since the discovery of graphene in 2004, two-dimensional (2D) materials have attracted widespread attention due to their excellent physical and chemical properties in the fields of energy, environment, catalysis, and optoelectronics. However, there are still many key problems in the process of practical application. To further promote the potential of 2D materials for practical applications, macroscopic assembly of 2D materials is crucial for the continued development of 2D materials, especially in the fields of energy storage and seawater desalination. Therefore, this review focuses on the latest progress and current status related to the macroscopic assembly of 2D materials, including 1D fibers, 2D films, and 3D architectures. In addition, the application of macroscopic bodies assembled based on 2D materials in the fields of energy storage and seawater desalination is also introduced. Finally, future directions for the macroscopic assembly of 2D materials and their applications are prospected.

14.
Discov Med ; 35(179): 995-1014, 2023 Dec.
Article En | MEDLINE | ID: mdl-38058065

BACKGROUND: Hypoxia is a pivotal factor influencing cellular gene expression and contributing to the malignant progression of tumors. Metabolic anomalies under hypoxic conditions are predominantly mediated by mitochondria. Nonetheless, the exploration of hypoxia-induced long noncoding RNAs (lncRNAs) associated with mitochondria remains largely uncharted. METHODS: We established hypoxia cell models using primary human hepatocytes (PHH) and hepatocellular carcinoma (HCC) cell lines. We isolated mitochondria for high-throughput sequencing to investigate the roles of candidate lncRNAs in HCC progression. We employed in vitro and in vivo assays to evaluate the functions of solute carrier family 1 member 5 antisense lncRNA (SLC1A5-AS). RNA-seq was utilized to scrutinize the comprehensive genome profile regulated by SLC1A5-AS in HCC. Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were utilized to validate the expression of alanine-serine-cysteine transporter 2 (ASCT2, encoded by the SLC1A5 gene), and a glutamine uptake assay was employed to estimate the glutamine uptake capacity of Huh-7 cells after SLC1A5-AS overexpression. To delve into the mechanisms governing the regulation of SLC1A5 expression by SLC1A5-AS, we employed a biotin-labeled SLC1A5-AS probe in conjunction with a western blot assay to confirm the interactions between SLC1A5-AS and candidate transcription factors. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) were utilized to authenticate the effects of the predicted transcription factors on SLC1A5 promoter activity. RESULTS: Following the screening, we identified CTB-147N14.6, derived from the antisense strand of the SLC1A5 gene, which we have named SLC1A5-AS. SLC1A5-AS exhibited significantly elevated expression levels in HCC tissue and was associated with poor prognosis in HCC patients. In vitro and in vivo assays revealed that the overexpression of SLC1A5-AS significantly heightened cell invasion and metastasis. RNA-seq data unveiled SLC1A5-AS involvement in glutamine metabolism, left-handed amino (L-amino) acid transmembrane transporter activity, and the nuclear factor kappa-B (NF-κB) signaling pathway. Overexpression of SLC1A5-AS markedly increased ASCT2 mRNA/protein levels, thereby enhancing glutamine uptake and promoting the growth and metastasis of HCC cells. Mechanistically, higher RNA levels of SLC1A5-AS directly bound with myeloid zinc finger 1 (MZF1), acting as a transcriptional repressor, thus diminishing its binding to the SLC1A5 promoter region. CONCLUSIONS: Our findings unveil a novel role for the lncRNA SLC1A5-AS in glutamine metabolism, suggesting that targeting SLC1A5-AS/MZF1, in conjunction with ASCT2 inhibitor treatment, could be a potential therapeutic strategy for this disease.


Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , RNA, Long Noncoding/genetics , Liver Neoplasms/pathology , Glutamine/genetics , Glutamine/metabolism , Glutamine/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/pharmacology , Hypoxia/genetics , Cell Proliferation , Cell Line, Tumor , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/pharmacology , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/pharmacology
15.
aBIOTECH ; 4(3): 272-276, 2023 Sep.
Article En | MEDLINE | ID: mdl-37974906

The strategy to expand the recognition spectrum of plant nucleotide-binding domain leucine-rich repeat (NLR) proteins by modifying their recognition sequences is generally limited and often unsuccessful. Kourelis et al. introduced a groundbreaking approach for generating a customized immune receptor, called Pikobody. This method involves integrating a nanobody domain of a fluorescent protein (FP) into a plant NLR. Their research demonstrates that the resulting Pikobody successfully initiates an immune response against diverse pathogens when exposed to the corresponding FP.

16.
Front Nutr ; 10: 1263853, 2023.
Article En | MEDLINE | ID: mdl-37781125

Selenium is an essential trace metalloid element that is associated with fundamental importance to human health. Our umbrella review aimed to evaluate the quality of evidence, validity, and biases in the relationship between selenium intake and health-related outcomes according to published systematic reviews with pooled data and meta-analyses. Selenium intake is associated with a decreased risk of digestive system cancers, all-cause mortality, depression, and Keshan disease, when in children reduce the risk of Kashin-Beck disease. Additionally, selenium supplementation can improve sperm quality, polycystic ovary syndrome, autoimmune thyroid disease, cardiovascular disease, and infective outcomes. Selenium supplementation also has relationship with a decreased concentration of serum lipids including total cholesterol and very low-density lipoprotein cholesterol. However, no evidence has shown that selenium is associated with better outcomes among patients in intensive care units. Furthermore, selenium intake may be related with a higher risk of type 2 diabetes and non-melanoma skin cancers. Moreover, most of included studies are evaluated as low quality according to our evidence assessment. Based on our study findings and the limited advantages of selenium intake, it is not recommended to receive extra supplementary selenium for general populations, and selenium supplementation should not be continued in patients whose selenium-deficient status has been corrected.

17.
Cell Rep ; 42(10): 113315, 2023 10 31.
Article En | MEDLINE | ID: mdl-37862164

The receptor protein PEX5, an important component of peroxisomes, regulates growth, development, and immunity in yeast and mammals. PEX5 also influences growth and development in plants, but whether it participates in plant immunity has remained unclear. Here, we report that knockdown of OsPEX5 enhances resistance to the rice blast fungus Magnaporthe oryzae. We demonstrate that OsPEX5 interacts with the E3 ubiquitin ligase APIP6, a positive regulator of plant immunity. APIP6 ubiquitinates OsPEX5 in vitro and promotes its degradation in vivo via the 26S proteasome pathway. In addition, OsPEX5 interacts with the aldehyde dehydrogenase OsALDH2B1, which functions in growth-defense trade-offs in rice. OsPEX5 stabilizes OsALDH2B1 to enhance its repression of the defense-related gene OsAOS2. Our study thus uncovers a previously unrecognized hierarchical regulatory mechanism in which an E3 ubiquitin ligase targets a peroxisome receptor protein that negatively regulates immunity in rice by stabilizing an aldehyde dehydrogenase that suppresses defense gene expression.


Ascomycota , Magnaporthe , Magnaporthe/metabolism , Ascomycota/metabolism , Ubiquitin-Protein Ligases/metabolism , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Plant Diseases , Disease Resistance , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
18.
Mol Plant ; 16(11): 1832-1846, 2023 11 06.
Article En | MEDLINE | ID: mdl-37798878

Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most important diseases of rice. Utilization of blast-resistance genes is the most economical, effective, and environmentally friendly way to control the disease. However, genetic resources with broad-spectrum resistance (BSR) that is effective throughout the rice growth period are rare. In this work, using a genome-wide association study, we identify a new blast-resistance gene, Pijx, which encodes a typical CC-NBS-LRR protein. Pijx is derived from a wild rice species and confers BSR to M. oryzae at both the seedling and panicle stages. The functions of the resistant haplotypes of Pijx are confirmed by gene knockout and overexpression experiments. Mechanistically, the LRR domain in Pijx interacts with and promotes the degradation of the ATP synthase ß subunit (ATPb) via the 26S proteasome pathway. ATPb acts as a negative regulator of Pijx-mediated panicle blast resistance, and interacts with OsRbohC to promote its degradation. Consistently, loss of ATPb function causes an increase in NAPDH content and ROS burst. Remarkably, when Pijx is introgressed into two japonica rice varieties, the introgression lines show BSR and increased yields that are approximately 51.59% and 79.31% higher compared with those of their parents in a natural blast disease nursery. In addition, we generate PPLPijx Pigm and PPLPijx Piz-t pyramided lines and these lines also have higher BSR to panicle blast compared with Pigm- or Piz-t-containing rice plants. Collectively, this study demonstrates that Pijx not only confers BSR to M. oryzae but also maintains high and stable rice yield, providing new genetic resources and molecular targets for breeding rice varieties with broad-spectrum blast resistance.


Magnaporthe , Oryza , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Seedlings/genetics , Seedlings/metabolism , Disease Resistance/genetics , Genome-Wide Association Study , Plant Breeding , Adenosine Triphosphate/metabolism , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Magnaporthe/genetics
19.
Am J Transl Res ; 15(8): 5446-5456, 2023.
Article En | MEDLINE | ID: mdl-37692952

OBJECTIVE: Forkhead box protein O1 (FOXO1) has been shown to regulate multiple proteins in various cardiovascular disease processes. However, the effect of FOXO1 on lipopolysaccharide (LPS)-induced cardiotoxicity remains unknown. The aim of this study was to explore the impact of FOXO1 on LPS-induced cardiotoxicity. METHODS: Rat-derived H9c2 cells were subjected to LPS, and the manipulation of FOXO1 was achieved through overexpression and knockdown using the adeno-associated virus system and siRNA, respectively. Western blotting and quantitative real-time polymerase chain reaction were utilized to examine the inhibitory effect of FOXO1. Cell viability was examined utilizing Cell Counting Kit-8 assay. The changes of apoptosis were examined utilizing Annexin V-FITC/PI method. The levels of pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-18, and tumor necrosis factor-α in the H9c2 cells were measured using ELISA kits. Reactive oxygen species (ROS) generation was quantified using the 2'-7'dichlorofluorescin diacetate assay kit. RESULTS: In H9c2 cells treated with LPS, FOXO1 expression was downregulated in a dose-dependent and time-dependent manner. Overexpression of FOXO1 attenuated LPS-induced apoptosis, oxidative stress injury, and cardiomyocyte inflammation, while FOXO1 inhibition aggravated these processes. Additionally, FOXO1 was found to regulate LPS-related myocardial injury by downregulating the expression of NLR family pyrin domain-containing 3 (NLRP3). CONCLUSION: FOXO1 overexpression attenuated apoptosis, ROS generation, and inflammation, whereas FOXO1 inhibition aggravated LPS-induced cardiomyocyte injury via the NLRP3 inflammasome signaling pathway.

20.
Acta Biochim Pol ; 70(3): 703-711, 2023 Sep 18.
Article En | MEDLINE | ID: mdl-37722013

Circular RNAs (circRNAs) contribute to the malignant phenotype and progression of several types of human cancers, including renal cell carcinoma (RCC). This study probed the molecular mechanism of circPGPEP1 regulating RCC proliferation, Warburg effect, and distant metastasis by targeting the miR-378a-3p/JPT1 axis. Here identified higher circPGPEP1 expression in RCC tissues and cells by RT-qPCR, and high levels of circPGPEP1 were positively correlated with high histological grade and distant metastasis in RCC patients. Furthermore, patients with high levels of circPGPEP1 had a worse survival prognosis. Functional assays presented that knockdown of circPGPEP1 inhibited RCC proliferation, invasion, migration, EMT, and Warburg effect. Dual-luciferase reporter assay, RNA immunoprecipitation, nucleoplasmic RNA isolation, and functional rescue experiments confirmed that circPGPEP1 induced JPT1 expression by sponging miR-378a-3p, thereby promoting RCC malignant phenotype. Xenograft assays and metastasis models further demonstrated that down-regulation of circPGPEP1 effectively inhibited tumor growth and distant metastasis of RCC. Taken together, circPGPEP1, a prognostic circRNA in RCC, acts through the miR-378a-3p/JPT1 axis to regulate RCC progression.


Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , Humans , Carcinoma, Renal Cell/genetics , Cell Proliferation/genetics , Down-Regulation , Kidney Neoplasms/genetics , MicroRNAs/genetics , RNA, Circular/genetics , Pyroglutamyl-Peptidase I/metabolism
...